
BlackJack Data Link Protocol
(JPL-D-20675)

Interface And Implementation Description

Allen H. Farrington
Allen.Farrington@jpl.nasa.gov

GPS Systems Group
Advanced Radiometric Instruments Group

Tracking Systems and Applications Section (335)
Telecommunications Science and Engineering Division (330)

Engineering and Science Directorate (300)

BlackJack Data Link Protocol JPL-D-20675
July 2001 2-of-61

Acknowledgement

The BlackJack Data Link Protocol is a formalization of the Turbo-Rogue Space
Receiver (TRSR) Protocol, originally developed at JPL by Charles Dunn of the
Advanced Radiometric Instruments Group (Section 335). It has been flown or is
about to be flown as the TRSR Protocol on several missions including GPSMET,
SRTM, CHAMP, SAC-C, ICESat, FedSat, VCL, GRACE, and Jason-1.

BlackJack Data Link Protocol JPL-D-20675
July 2001 3-of-61

1 Overview
1.1 Introduction

The BlackJack Data Link Protocol is a “wrapper” protocol (similar to HDLC) that
ensures the framing and integrity of data transported on byte-oriented links. The
format also maintains packet boundaries of data within any serial access device
such as data files.

The BlackJack Data Link Protocol only carries the user information. While it
only “wraps” user information, it is sensitive to the actual user information being
transported; see section 3.1.2, Byte Escapes, below.

1.2 Rationale
In some cases, data transported onboard spacecraft is subject to unreliable
transmission channels. This unreliability expresses itself at all points from data
source to data sink. Some examples include:

radiation effects in space-based buffers,
on-board protocol conversion anomalies,
flight computer processing load issues,
noise in space-ground transmissions, and
file transfer protocol anomalies in the ground segment.

The BlackJack Data Link Protocol mitigates this unreliability by providing
mechanisms that maintain Framing and Integrity. Framing allows for the
detection of dropped or added bytes and Integrity allows for the detection of
altered bits within transmitted bytes.

In addition to this Framing and Integrity capability, the BlackJack Data Link
Protocol also provides some rudimentary routing support. This support intends to
provide the ability for multiple instruments to inter-operate using the Link
Protocol to provide source and destination information.

1.3 Heritage
The BlackJack Data Link Protocol is based almost entirely on the Turbo-Rogue
Space Receiver (TRSR) protocol. This protocol has been used on flight missions
ranging from GPSMet to GRACE. Some of the rarely used capabilities of the
TRSR protocol were removed to make the BlackJack Data Link Protocol more
effective and easier to implement.

This document, however, does not depend on any previous documents, such as
mission-specific documentation of the TRSR Protocol.

BlackJack Data Link Protocol JPL-D-20675
July 2001 4-of-61

2 References
There are no references at this time.

BlackJack Data Link Protocol JPL-D-20675
July 2001 5-of-61

3 Link Protocol Description
In this description, the input data sequence is referred to as the “packet” and the
output data sequenced is referred to as the “protocol packet”.

Packets provided to the BlackJack Data Link Protocol are processed according to
this description prior to transmission. This process is called “wrapping”. Protocol
Packets provided to the BlackJack Data Link Protocol are processed after
reception in a process called “stripping”.

This section provides all the required information for implementing the wrapping
and stripping functions of the protocol.

There is no defined Link Control Protocol for this protocol.

3.1 Framing
Packets of data are presented to the Protocol and wrapped to achieve framing.
Framing allows the receiving mechanism to establish the boundaries of a protocol
packet so that integrity checks can be performed. There are four steps to framing:

indicate the start of the protocol packet,
indicate the end of the protocol packet,
sequence protocol packets for re-assembly (optional), and
insure that packet data cannot be misinterpreted as the start or end.

A special single-byte flag called the Open Flag indicates the start of a packet.

The end of protocol packets is indicated by providing the length of the protocol
packet. This length is indicated by a single-byte count of header bytes and by a
two-byte count of data bytes within the protocol packet.

An optional mechanism is added to allow for spanning packets, that is packets
that must reassembled in a particular order. This mechanism is the protocol
packet sequence number.

To insure that no packet data or protocol packet header information is
misinterpreted as the Open Flag, all the bytes of the protocol packet are subject
to being “escaped”. These escape sequences turn some single bytes into two-byte
patterns that can be uniquely determined on receipt.

3.1.1 The Open Flag
The Open Flag is the first byte of any protocol packet. It is always the ASCII STX
(start of transmission) character. The ASCII STX character has the value of 2
(0x02).

BlackJack Data Link Protocol JPL-D-20675
July 2001 6-of-61

3.1.2 Byte Escapes
To prevent occurrences of the STX character from appearing in the protocol
packet, the packet data and associated protocol packet header is “escaped”. Any
occurrence of the STX character is converted to the two-byte sequence, [DLE
(0x10)][“O” (0x4F)]. Additionally, any occurrence of the DLE character is
converted to the two-byte sequence, [DLE (0x10)][“E” (0x45)]. No other escape
sequences are currently defined and are considered errors in the protocol.

Packet Ready For Framing
0x20 0x04 0x00 0x02 0xFF 0x10 0xBC 0xE4

0x20 0x04 0x00 0x10 0x4F 0xFF 0x10 0x45 0xBC 0xE4
 Packet After Escaping Operation, prior to adding the Open Flag (STX).

3.1.3 Data And Header Counts
The actual header of a protocol packet is variable length, depending on the
features selected for a particular transmission. The length of the header,
therefore, is provided as a part of the header. The current definition of the header
provided in this document indicates a maximum header length of 10 bytes, but
striper implementations should properly ignore unknown header bytes provided
that the header length field is assumed correct.

Within the protocol packet, the length of the packet data is indicated by a two-
byte header field. The size of the packet data is restricted to 65,535 bytes, the
amount that can be carried by a 16-bit size field.

3.1.4 Sequence Numbering
Protocol packets can be optionally sequence numbered so that spanning packets
can be wrapped and then reassembled after stripping. The sequence number is a
sequentially increasing number that has an undefined epoch. Generally, the
epoch is mission specific and will reset on a mission-specific basis. The sequence
number is an optional part of the protocol packet header.

Re-assembly of spanning packets is the responsibility of the protocol user, not the
protocol itself and is therefore a non-standard feature that must be further
specified by mission-specific documentation.

BlackJack Data Link Protocol JPL-D-20675
July 2001 7-of-61

3.2 Routing
To facilitate some routing capabilities during post-processing, two optional
indicators are provided in the protocol header. Source Indicator provides a
mission-specific value (within some limits) which identifies the source of the
protocol packet. Likewise, the Destination Indicator provides the intended sink of
the protocol packet. The number format for these indicators is required to be
identical across a single mission.

3.2.1 Source Indicator
The source indicator is a two-byte number and appears in the protocol packet
header.

3.2.2 Destination Indicator
The destination indicator is a two-byte number and appears in the protocol
packet header. The destination value of 0xFFFF represents a broadcast address
for systems that implement multiple access communications.

3.3 Integrity
The Flag Byte, the optional Ack/NAck bits, and the optional CRC confirm
protocol packet integrity. Taken together, these capabilities allow for the
detection and reporting of bit-errors in the protocol packet due to transmission
errors.

BlackJack Data Link Protocol JPL-D-20675
July 2001 8-of-61

3.3.1 Flag Byte
The Flag Byte contains bit definitions as follows:

Bit 7 (MSB) Reserved
This bit should be set to zero by wrappers. Strippers should
ignore this bit.

Bit 6 RequestAcknowledge
This bit indicates that a link-level acknowledge of this packet
should be generated. This bit must be set to zero for the
Acknowledge protocol packets.

Bits 5,4 CRC Code
11 – Illegal Value
10 – CRC Present
01 – No CRC Present
00 – Illegal Value
Bits 5 & 4 are mutually exclusive and over-specified to prevent a
single-bit error from making a bad packet look good.

Bits 3,2 Type Code
11 – Negative Acknowledge Type
10 – Positive Acknowledge Type
01 – Reserved
00 – Normal Link Packet
For the Negative and Positive Acknowledge type codes, there is
no data in the data part of the packet, therefore the data length
field (see below) is set to zero (0x0000).

Bits 1, 0 Packet Priority
A two-bit number from 0 to 3 indicating priority of the packet.
Higher numbers indicates higher priority packets with 3 being
the highest. The handling of different priority protocol packets is
the responsibility of the wrapping and stripping functionality.

3.3.2 CRC-16 Generation
Adding new bytes to the code using the following formula generates the protocol
packet Cyclical Redundancy Code (CRC-16):

CRC = (CRC << 8) XOR TableLookup[(CRC >> 8) XOR NewByte]

All operations are on unsigned types.

The seed value is zero.

The TableLookup function is based the table presented in Appendix A.

BlackJack Data Link Protocol JPL-D-20675
July 2001 9-of-61

3.4 Complete Packet Description
The protocol packet header is made up of a collection of the fields described
previously. Some of the fields are optional. A complete description of the packet is
as follows:

Header

1 Byte 1 Byte 1 Byte 2 Bytes 2 Bytes 2 Bytes 2 Bytes N-Bytes N-Bytes 2 Bytes

Open
Flag
(STX)

Flag
Byte

Header
Length

Data
Length

Seq.
Number

(opt.)

Dest.
Address

(opt.)

Source
Address

(opt.)

Future
Header
(opt.)

Data
Field

CRC

(opt.)

Bytes Subject to CRC calculation

Bytes Subject to Escaping

The Open Flag is always transmitted first and is not considered a part of the
header nor does it participate in the header count. The next byte transmitted, the
Flag Byte is considered the first byte of the header and counts towards the
header length.

If the Header length is greater than four, then optional portions of the header are
present. The optional fields will always appear in the order shown here, Sequence
Number, Destination Address, and Source Address, followed by any future
extensions of the header. With this version, there are no future header extensions
described, however, protocol strippers can be written to account for this future
expansion and remain robust while ignoring the future header bytes.

Following the header is the Data Field. There may be up to the number of bytes
indicated in the Data Length header field. This size need not correspond to any
notion of what the internal Data Field format may be, i.e. it may be padded for
telemetry alignment purposes. This type of padding is outside the scope of this
definition document.

Following the Data Field is the optional CRC. The presence of a CRC is indicated
by the Flag Byte.

All bytes in the packet with the exception of the Open Flag are subject to
escaping. This renders decoding by counting bytes unreliable.

3.5 Order Of Operations
The order of the operations must be consistent between the two operations of
wrapping and stripping. Section 4, Implementation, contains further details of
these operations as summarized here.

3.5.1 Wrapping
The header fields are determined first. The Flag Byte is set to indicate the
particular requirements of the transmission. The Header Length field is set to a
length, depending on the type of header the transmission requires. The size of the
packet data is set into the Data Length field of the header. The rest of the
optional fields are set, if required.

The packet data is then appended to the header and if required, the CRC is
calculated and appended to the end of the packet data to form the proto-packet
for transmission.

BlackJack Data Link Protocol JPL-D-20675
July 2001 10-of-61

Next, the proto-packet is scanned for occurrences of the STX (0x02) and DLE
(0x10) characters. Each occurrence is escaped into a two-byte sequence as
described previously. The protocol packet is completed for transmission by
placing a single STX (0x02) character at the beginning of the packet.

3.5.2 Stripping
For the most part, the operations are reversed from the wrapping operations.
Logically, the protocol packet must be de-escaped prior to processing any fields.
In implementation, however, it is possible to de-escape the bytes “on-the-fly”
while processing the fields.

After bytes are de-escaped, the header length must be processed to find the start
of the data section. If the header length exceeds ten, then extended header bytes
may be ignored (but included in the CRC calculation), but they must not be
counted as data bytes. The Data Length field is used to find the start of the
optional CRC.

If at any time during the stripping process an STX character appears in the byte
stream before the de-escape operation is applied, then the packet is in error. If
this occurs prior to reaching the end of the Data Field or the optional CRC, then
an error condition exists.

After stripping, the Flag Byte bit 6 will indicate whether or not an acknowledge
has been requested for this protocol packet. If bit 6 is true (1), then a data-less
acknowledge packet should be constructed and sent as a response. Acknowledge
packets always carry a CRC and a priority of (3) three. The Acknowledge packet
Flag Byte is set according to those requirements by the library. In addition, the
Type Code fields of the Flag Byte should be set to indicate the status result from
the stripping operation, Negative or Positive.

Multi-packet byte streams are processed by the library example provided in this
document. The return code from the stripping operation will return how many
packets a particular pass completed. In multi-packet streams, retrieving buffers
with data will return the higher priority messages first.

BlackJack Data Link Protocol JPL-D-20675
July 2001 11-of-61

4 Link Protocol Implementation Guide
4.1 Overview

This implementation guide is provided to support implementers in the
development of BlackJack Data Link Protocol code. It is not the only way to
implement the protocol, but represents the “reference” implementation as used
on the BlackJack GPS receivers and associated NavaTyrr-class Transceivers.

This implementation guide is provided primarily as C++ source code. Conversion
to C source code is possible without changing the actual algorithms.

The actual code is found as an appendix to this document, Appendix B.

4.2 Support Objects
Several objects support both the stripping and wrapping of BJDLP packets.

4.2.1 FlagByte Source Code
The FlagByte object encodes the flag byte of the protocol. The flag byte is a single
8-bit field in the protocol header. This class represents that byte by providing
several access, setting, and Boolean check methods. The bit-fields within the byte
are all represented by method to set the specific fields as well as to determine
their settings within the entire byte.

When the FlagByte object is constructed, it’s default value is set to indicate CRC
present and that the associated packet is a Link packet.

An operator is provided, operator unsigned char, to allow the FlagByte object to
be accessed as a byte as necessary.

4.2.2 Header Source Code
The Header object implements the entire header for the protocol packet. It
contains the actual buffer that holds the bytes of the header, output formatting
methods, and the storage for each header field.

This class defines a set of access methods for each header field such as the type
flag (class FlagByte) and the length fields.

Two operators, operator unsigned char* and operator[] are provided to allow the
header’s contents to be accessed either as a series of bytes or individually,
respectively.

BlackJack Data Link Protocol JPL-D-20675
July 2001 12-of-61

4.2.3 CRC Source Code
The CRC object implements the CRC data object that is transmitted at the end of
the protocol packet. It also contains the algorithm for calculating the CRC-16 and
the CRC-16 lookup table as static data.

When the CRC is constructed, it is initialized (seeded) to zero (0). A reset method
is provided to reset the CRC to the seed value without destroying the object and
constructing a new object.

A set of operators is provided for the CRC object to allow it to be manipulated.
Four operators, operator(), provide various ways to add bytes to the CRC. Both
signed and unsigned data bytes may be added to the CRC, however, all CRC-16
calculations are performed as unsigned operations.

An operator is provided to allow the CRC object to be used as an unsigned short
(16-bits).

4.3 Stripping Objects
Two objects are primarily used in stripping the protocol from data after receipt.
The RcvPacket object actually strips the protocol packets and places the
contained data into a queue of RcvBuffer objects. RcvBuffer objects carry both the
data and status information reflecting the results of the stripping operation.

4.3.1 RcvBuffer Source Code
The RcvBuffer object carries both the data extracted from a protocol packet as
well as status information reflecting the results of the stripping operation. The
status indications include three major categories of status, no status (due to no
current packet), oddities, and errors.

No status, or “NoPacketYet” is an indicator that the RcvPacket object uses to
indicate that it has not received enough bytes to completely strip a packet yet.

Oddities are a class of results that mean that the stripped protocol packet had an
anomaly that may not have been fatal. These anomalies include BigHeader, an
indication that the header is more than 10 bytes; LargeData, an indication that
the data portion of the packet is more than 2048 bytes; SmallData, an indication
that the data portion of the packet is zero; and CRCDidNotCheck, an indication
that the CRC did not check.

The CRCDidNotCheck condition is actually considered an error, however, it is
grouped with the oddities because the data may be recoverable.

Error conditions include ShortPacket, an indication that an OpenFlag (STX) was
received prior to the completion of the processing of a protocol packet;
UnknownEscape, an indication that the escape sequence is not one of the two
defined; BadCRCBits, an indication that the CRC bits in the FlagByte are an
illegal combination; and ConfusedMachine, an indication that the state machine
has entered an illegal state (usually SEU induced).

The RcvBuffer object contains methods to access and set the status as well as
some Boolean methods used to quickly determine the status settings.

BlackJack Data Link Protocol JPL-D-20675
July 2001 13-of-61

Additionally, the RcvBuffer will assess the settings of the FlagByte and indicate
whether or not a response is required. It is up to the application using this object
to actually construct the response packet depending on the status indication of
the RcvBuffer.

A copy constructor and operators are provided to allow RcvBuffers to be used as
STL container objects.

Operators are provided to allow the buffer’s data to be accessed as an indexed
array or as a pointer to the data buffer itself.

4.3.2 RcvPacket Source Code
The RcvPacket object is the primary algorithm object for stripping protocol
packets. This object implements a state machine to decode protocol packets “on
the fly”. Generally, the state machine transitions from one state to another
without moving back. During byte processing, state transitions are minimized.

The states of the machine while processing protocol packets are:

WaitForOpen - wait for the <STX> indicating the start of a packet,
ReadType - read the type flag field,
ReadHeaderLen - read the header length field,
ReadDataLen - read the two-byte data length field,
ReadSeqNum - read the optional two-byte sequence number field,
ReadDest - read the optional two-byte destination address field,
ReadSrc - read the optional two-byte source address field,
CollectingData - read the data bytes,
ReadCRC - read the optional two-byte CRC field, and
GotDLE - got an escape, process the escape.

For all states except WaitForOpen and GotDLE, the state machine pre-processes
each byte looking for two pre-conditions:

The <STX> character, indicating a new packet starting, and
The <DLE> character, indicating an escape sequence start.

The first condition is an error and will be flagged as a short packet error (see
RcvBuffer above). The second condition causes a transition into the GotDLE
state.

The GotDLE state simply saves the previous state and then processes the next
byte by substituting the appropriate byte for the second part of the escape
sequence and then transitioning back to the previous state for regular processing.
Only two escapes are permitted in this version; other escapes are flagged as
errors.

The state machine initializes into the WaitForOpen state and ignores (i.e. drops)
any bytes processed until the <STX> character is received. Once the <STX>
character is received, it transitions into the ReadType state. Throughout this
processing, the bytes processed by the particular states are added to a running
CRC to be checked at the end of the packet, if specified.

BlackJack Data Link Protocol JPL-D-20675
July 2001 14-of-61

The ReadType state takes the next byte and interprets it as the TypeFlag. This
indicates to the state machine whether or not to look for CRC’s at the end of the
data (see CollectingData below). After processing one byte, the machine
transitions into the ReadHeaderLen state.

The ReadHeaderLen state reads one byte and takes that as the length of the
header. Nominally, this is a number between 6 and 10, but may range higher.
This version only knows how to process headers up to 10 bytes long, but will
ignore larger headers making it backwards compatible in a robust way. After
processing one byte, the machine transitions into the ReadDataLen state.

The ReadDataLen state collects two bytes and determines the size of the data
field. This size is used later in the CollectingData state. The machine then sets
up the return RcvBuffer for this packet and checks the size limits. If the header
length has been reached after the processing of these two bytes, the machine
transitions into the CollectingData state, otherwise, it transitions into the
ReadSeqNum state.

The ReadSeqNum state collects two bytes and stores the sequence number into
the packet storage RcvBuffer. If the header length has been reached after the
processing of these two bytes, the machine transitions into the CollectingData
state, otherwise, it transitions into the ReadDest state.

The ReadDest state collects two bytes and stores the destination address into the
packet storage RcvBuffer. If the header length has been reached after the
processing of these two bytes, the machine transitions into the CollectingData
state, otherwise, it transitions into the ReadSrc state.

The ReadSrc state collects two bytes and stores the source address into the
packet storage RcvBuffer. The machine transitions into the CollectingData state
after the receipt of these bytes since this version does not understand anymore
header bytes.

The CollectingData state processes bytes by adding them to the running CRC
until it has collected all the rest of the header bytes. When the number of bytes
processed exceeds the value of the HeaderLen field, then the machine starts
storing bytes into the RcvBuffer setup in the ReadDataLen state. When the
amount of bytes equal to DataLen has been collected, the machine checks the
state of the CRC bits within the FlagByte and then, if indicated, transitions to
the ReadCRC state. If no CRC is indicated, the machine sets the return value so
that the calling process can know that a complete packet was processed. It then
returns to the WaitForOpen state.

The ReadCRC state is used to compare the transmitted CRC with the calculated
running CRC. The result of that check is stored in the RcvBuffer for this packet
and then the machine returns to the WaitForOpen state.

If for any reason during processing the state variable is not one of the above
values, a ConfusedMachine return value is indicated and the WaitForOpen state
is entered to try and pick up on the next packet.

The RcvPacket object contains a queue that holds RcvBuffers that have been
processed out of protocol packets. This queue is automatically fed by the

BlackJack Data Link Protocol JPL-D-20675
July 2001 15-of-61

operator() method which processes the input bytes. The queue is a priority queue
and will sort decoded packets according to their priority.

Two operators are provided as the primary interface to this class. The operator()
is used to input a buffer of bytes (including single-byte buffers) that is processed
for packet contents. The fragmentation of the input buffers is not important to
the internal state machine’s operation. The operator() returns the number of
complete packets in the storage queue so that calling processes can extract all the
contents of the queue.

The conversion operator RcvBuffer() is used to extract completed RcvBuffer’s
from the internal queue. This operator returns the actual RcvBuffer and removes
it from the internal queue.

4.4 Wrapping Objects
The primary object used in wrapping packets is the SendPacket object. This
object packages buffers of data up into protocol packets. The format of the data to
be wrapped is not important to this object. It does, however, produce content-
sensitive protocol packets due to the escape sequence generation.

4.4.1 SendPacket Source Code

The SendPacket object contains members used to represent all the components of
the protocol packet header and CRC as well as internal buffers used in the
construction and manipulation of the protocol packets.

The SendPacket object contains a static member to generate the sequence
number, if included in the header. This ensures that the sequence numbers are
monotonically increasing regardless of how many SendPacket objects are
constructed.

The SendPacket object contains a copy constructor, operator=, and operator< to
support STL containers.

The normal constructor includes the input of the data buffer, the size of the
buffer, and the priority of the packet being constructed.

After construction, data can be appended to the packet using the AppendPacket()
method.

The conversion operator char*() is used to extract the formatted packet from the
object to inject into an output byte stream.

BlackJack Data Link Protocol JPL-D-20675
July 2001 16-of-61

Several methods are provided to set the header parameters of the packet:

SetTypeFlag - allows for setting the entire TypeFlag,
SetTypeToReqAck - allows only setting ReqAck,
SetTypeToLink - allows only setting the packet type bits,
SetTypeToNAQ - allows the construction of Negative Acks,
SetTypeToACK - allows the construction of Positive Acks,
SetPriority - allows the setting of the packet priority,
SetToUseSequenceNumber - turns on Sequence Number generation,
SetDestinationAddress - sets the Destination Address, and
SetSourceAddress - sets the Source Address.

The private methods PrepareBuffer() and EscapeAndWrite() are used internally
to format the output buffers from the input data.

BlackJack Data Link Protocol JPL-D-20675
July 2001 17-of-61

Appendix A:
CRC Generation Table Lookup Values

BlackJack Data Link Protocol JPL-D-20675
July 2001 18-of-61

Example: If the lookup key, ((CRC >> 8) XOR NewByte), is 0x68, the lookup value is
0xEDAE.

0 1 2 3 4 5 6 7 8 9 A B C D E F
0X 0000 1021 2042 3063 4084 50A5 60C6 70E7 8108 9129 A14A B16B C18C D1AD E1CE F1EF
1X 1231 0210 3273 2252 52B5 4294 72F7 62D6 9339 8318 B37B A35A D3BD C39C F3FF E3DE
2X 2462 3443 0420 1401 64E6 74C7 44A4 5485 A56A B54B 8528 9509 E5EE F5CF C5AC D58D
3X 3653 2672 1611 0630 76D7 66F6 5695 46B4 B75B A77A 9719 8738 F7DF E7FE D79D C7BC
4X 48C4 58E5 6886 78A7 0840 1861 2802 3823 C9CC D9ED E98E F9AF 8948 9969 A90A B92B
5X 5AF5 4AD4 7AB7 6A96 1A71 0A50 3A33 2A12 DBFD CBDC FBBF EB9E 9B79 8B58 BB3B AB1A
6X 6CA6 7C87 4CE4 5CC5 2C22 3C03 0C60 1C41 EDAE FD8F CDEC DDCD AD2A BD0B 8D68 9D49
7X 7E97 6EB6 5ED5 4EF4 3E13 2E32 1E51 0E70 FF9F EFBE DFDD CFFC BF1B AF3A 9F59 8F78
8X 9188 81A9 B1CA A1EB D10C C12D F14E E16F 1080 00A1 30C2 20E3 5004 4025 7046 6067
9X 83B9 9398 A3FB B3DA C33D D31C E37F F35E 02B1 1290 22F3 32D2 4235 5214 6277 7256
AX B5EA A5CB 95A8 8589 F56E E54F D52C C50D 34E2 24C3 14A0 0481 7466 6447 5424 4405
BX A7DB B7FA 8799 97B8 E75F F77E C71D D73C 26D3 36F2 0691 16B0 6657 7676 4615 5634
CX D94C C96D F90E E92F 99C8 89E9 B98A A9AB 5844 4865 7806 6827 18C0 08E1 3882 28A3
DX CB7D DB5C EB3F FB1E 8BF9 9BD8 ABBB BB9A 4A75 5A54 6A37 7A16 0AF1 1AD0 2AB3 3A92
EX FD2E ED0F DD6C CD4D BDAA AD8B 9DE8 8DC9 7C26 6C07 5C64 4C45 3CA2 2C83 1CE0 0CC1
FX EF1F FF3E CF5D DF7C AF9B BFBA 8FD9 9FF8 6E17 7E36 4E55 5E74 2E93 3EB2 0ED1 1EF0

BlackJack Data Link Protocol JPL-D-20675
July 2001 19-of-61

Appendix B:
Source Code

BlackJack Data Link Protocol JPL-D-20675
July 2001 20-of-61

// FlagByte.h
//
// Flag Byte
//
// Interface for the FlagByte class.
// This class defines the packet header flag byte type.

// only include this file once per compilation
#ifndef _FLAGBYTE_H_
#define _FLAGBYTE_H_

class FlagByte
{

private:
// the actual type byte storage
unsigned char Val;

public:
// constants to support bit decoding
enum
{

ReqACK = 0x40, // Acknowledge

CRCMask = 0x30, // CRC bits Mask
CRCPresent = 0x20, // CRC Present
NoCRC = 0x10, // CRC Not Present

PrioMask = 0x03 // Priority bits Mask
};

// distinct packet types
typedef enum
{

TypeMask = 0x0C // Type bits Mask
};

typedef enum
{

NAQPkt = 0x0C, // Negative Acknowledge Packet Type
ACKPkt = 0x08, // Positive Acknowledge Packet Type
ReservedPkt = 0x04, // Reserved Packet Type
TransportPkt = 0x00 // Normal Data Transport Packet Type

}
PktTypes;

// constructors
// the default construction provides a CRC and sets the type as a DataPkt
FlagByte(unsigned char theFlagValue = CRCPresent | TransportPkt);

// a placeholder, it does nothing
~FlagByte();

// operators
// this is the unsigned char conversion operator
// it returns the type byte
operator unsigned char();

// get/set methods
// the Set method allows for the setting of the flag
// byte directly, without regard to the contents or
// meaning of the bits of the flag

BlackJack Data Link Protocol JPL-D-20675
July 2001 21-of-61

// the Get method returns the flag byte, similar to the operator above
void SetFlag(unsigned char theFlag);
unsigned char GetFlag() const;

// these two methods allow you to check and set (respectively)
// the acknowledge bit of the flag byte
bool isReqACK() const { return Val & ReqACK; } // true if packet is an acknowledge packet
void SetReqACK(bool yesno); // argument, yesno, true = Ack packet, false = normal

// these three methods allow you to check, set, and test the validity (respectively)
// of the CRC bit of the flag byte
bool hasCRC() const { return !((Val & CRCMask) == NoCRC); } // true if CRC is present

// illegal bit combinations are set to have the CRC so that
// malformed packets will be tossed along with the next packet

void SetCRC(bool yesno); // argument, yesno, true = CRC on, false = CRC off
bool ValidCRCBits() const; // true if CRC bits are a valid combination

// these methods allow you to manipulate and check the type bits of the flag byte
int Type() const { return Val & TypeMask; } // returns the type of packet, properly masked
bool isType(int aType) const { return (Val & TypeMask) == aType; } // compares the type with an integer type (operator==)
void SetType(int theType); // allows you to set the type, properly masked

// these methods allow for the setting and checking of the type bits of the packet
bool isNAQPkt() const { return Val & NAQPkt; } // returns true if the packet is a NAQ type
void SetToNAQ(); // sets the packet to be NAQ type

bool isACKPkt() const { return Val & ACKPkt; } // returns true if the packet is a ACK type
void SetToACK(); // sets the packet to be ACK type

bool isTransportPkt() const { return Val & TransportPkt; } // returns true if the packet is a Transport type
void SetToTransportPkt(); // sets the packet to be Transport type

// these methods allow for the setting and checking of the priority bits of the packet
int Prio() const { return Val & PrioMask; } // returns the priority, properly masked
void SetPrio(unsigned char Priority); // allows you to set the priority, properly masked

};

#endif _FLAGBYTE_H_

BlackJack Data Link Protocol JPL-D-20675
July 2001 22-of-61

// FlagByte.cpp
//
// Flag Byte
//
// Implementation for the FlagByte class.
// This class defines the packet header flag byte type.

#include "FlagByte.h"

#pragma export on

// constructors
// default constructor
// construct with a value
FlagByte::FlagByte(unsigned char theFlagValue) :

Val(theFlagValue)
{}

// default destructor
FlagByte::~FlagByte()
{}

// operators
FlagByte::operator unsigned char()
{

 return Val;
}

// get/set methods
void FlagByte::SetFlag(unsigned char theFlag)
{

Val = theFlag;
}

unsigned char FlagByte::GetFlag() const
{

return Val;
}

// bit manipulation methods
// set the Request Acknowledge Bit
void FlagByte::SetReqACK(bool yesno)
{

if(yesno)
{

Val |= ReqACK;
}
else
{

Val &= ~ReqACK;
}

}

// set the CRC Bit
void FlagByte::SetCRC(bool yesno)
{

BlackJack Data Link Protocol JPL-D-20675
July 2001 23-of-61

Val &= ~CRCMask; // clear the CRC Bits
Val |= (yesno) ? CRCPresent : NoCRC; // set the appropriate bits

}

// check the validity of the CRC bits
bool FlagByte::ValidCRCBits() const
{

bool retVal = false;

switch(Val & CRCMask)
{

case CRCPresent:
case NoCRC:

retVal = true;
break;

default:
retVal = false;
break;

}

return retVal;
}

// set the Type to a value
void FlagByte::SetType(int theType)
{

Val &= ~FlagByte::TypeMask; // clear the type bits
Val |= (theType & FlagByte::TypeMask); // set only the type bits

}

// set the type to Negative Response (NAQ) packet type
void FlagByte::SetToNAQ()
{

Val &= ~FlagByte::TypeMask; // clear the type bits
Val |= NAQPkt; // set only the type bits to NAQ

}

// set the type to Positive Response (ACK) packet type
void FlagByte::SetToACK()
{

Val &= ~FlagByte::TypeMask; // clear the type bits
Val |= ACKPkt; // set only the type bits to ACK

}

// set the type to Transport packet type
void FlagByte::SetToTransportPkt()
{

Val &= ~FlagByte::TypeMask; // clear the type bits
Val |= TransportPkt; // set only the type bits to NAQ

}

// set the priority
void FlagByte::SetPrio(unsigned char Priority)
{

Val &= ~FlagByte::PrioMask; // clear the priority bits
Val |= (FlagByte::PrioMask & Priority); // set the priority bits

BlackJack Data Link Protocol JPL-D-20675
July 2001 24-of-61

}

#pragma export reset

BlackJack Data Link Protocol JPL-D-20675
July 2001 25-of-61

// Header.h
//
// Header
//
// Interface for the Header class.
// This class defines the packet header and supports headers up to
// 10 Bytes in length to include
// <TypeFlag> 1 Byte (required)
// <HeaderLength> 1 Byte (required)
// <DataLength> 2 Bytes (required)
// <SequenceNumber> 2 Bytes (optional)
// <DestinationAddress> 2 Bytes (optional)
// <Source Address> 2 Bytes (optional)

// only include this file once per compilation
#ifndef _HEADER_H_
#define _HEADER_H_

// include support for the type flags class
#include "FlagByte.h"

#define MAX_HEADER 10

class Header
{

private:
// the buffer where the header is assembled
// the maximum size of a TRSR Header is 10 Bytes
unsigned char hBuffer[MAX_HEADER];

protected:
// the type flag
// see TRSRFlagByte.h for a complete description
FlagByte TypeFlag;

// the length of this header
// current range is 4-10 Bytes in increments of two
// the length cooresponds to the inclusion of the optional Bytes described above
// and does not include the optional CRC bytes at the end of the packet
unsigned char HeaderLength;

// the length of the encapulated data, not including escape sequences
unsigned short DataLength;

// an optional sequence number on the output packet
unsigned short SequenceNumber;

// an optional destination receiver address
unsigned short DestinationAddress;

// an optional source receiver address
unsigned short SourceAddress;

public:
// constants used in escaping packets
enum
{

OpenFlag = 0x02, // this byte starts every packet
DLE = 0x10, // this byte preceeds escape sequences

BlackJack Data Link Protocol JPL-D-20675
July 2001 26-of-61

OpenESC = 0x4F, // this is the second byte of the escape sequence for 0x02
ESCESC = 0x45 // this is the second byte of the escape sequence for 0x10

};

// default values for the source and destination receivers
enum
{

Rcvr = 0x8003,
Host = 0x8081

};

// constructors
// makes a null packet with a header length of 4 and a data length of zero (0)
Header();

// makes a packet with a header length of 4 and the specified data length
Header(unsigned short theDataLength);

// makes a packet with a header length of 6, the specified data length, and the specified SequenceNumber
Header(unsigned short theDataLength, unsigned short theSequenceNumber);

// makes a packet with a header length of 6, the specified data length, the specified SequenceNumber, and
// the specified source and destination addresses
Header(unsigned short theDataLength, unsigned short theSequenceNumber, unsigned short theDestinationAddress, unsigned short theSourceAddress);

// this destructor is a place holder, it does nothing extra
~Header();

// operators
// this is the unsigned char, array access operator
// it returns the byte of the header specified by the argument
unsigned char operator[] (int i);

// this is the the unsigned char* conversion operator
// it returns a pointer to the buffer after the buffer is properly
// filled-out from the internal representations of the buffer contents
operator unsigned char*();

private:
// this function provides a formatting function to place the internal
// representations of the header contents into the header buffer
void Bufferize();

public:
// set methods - allow manipulation of the internal representation of the header
// sets the type flag with a specific value the value is not checked for correctness
void SetTypeFlag(unsigned char theTypeFlag);

// same as SetTypeFlag(), provided for backwards compatibility
void SetType(unsigned char theType);

// these methods set the internal representations of their coresponding elements
void SetHeaderLength(unsigned char theHeaderLength);
void SetDataLength(unsigned short theDataLength);
void SetSequenceNumber(unsigned short theSequenceNumber);
void SetDestinationAddress(unsigned short theDestinationAddress);
void SetSourceAddress(unsigned short theSourceAddress);

// get methods - return the internal representations of their coresponding elements
unsigned char GetTypeFlag() const;
unsigned char GetHeaderLength() const;
unsigned short GetDataLength() const;

BlackJack Data Link Protocol JPL-D-20675
July 2001 27-of-61

unsigned short GetSequenceNumber() const;
unsigned short GetDestinationAddress() const;
unsigned short GetSourceAddress() const;

};

#endif _HEADER_H_

BlackJack Data Link Protocol JPL-D-20675
July 2001 28-of-61

// Header.cpp
//
// Header
//
// Implementation for the TRSRHeader class.
// This class defines the TRSR packet header.

#include <cstring>

#include "Header.h"

using namespace std;

// constructors
// default constructor
Header::Header() :

HeaderLength(4),
DataLength(0),
SequenceNumber(0),
DestinationAddress(0),
SourceAddress(0)

{}

// constructor with only lengths
Header::Header(unsigned short theDataLength) :

HeaderLength(4),
DataLength(theDataLength),
SequenceNumber(0),
DestinationAddress(0),
SourceAddress(0)

{}

// constructor with a sequence number
Header::Header(unsigned short theDataLength, unsigned short theSequenceNumber) :

HeaderLength(6),
DataLength(theDataLength),
SequenceNumber(theSequenceNumber),
DestinationAddress(0),
SourceAddress(0)

{}

// constructor with a destination address and source address
Header::Header(unsigned short theDataLength, unsigned short theSequenceNumber, unsigned short theDestinationAddress, unsigned short theSourceAddress) :

HeaderLength(10),
DataLength(theDataLength),
SequenceNumber(theSequenceNumber),
DestinationAddress(theDestinationAddress),
SourceAddress(theSourceAddress)

{}

// default destructor
Header::~Header()
{}

// operators

BlackJack Data Link Protocol JPL-D-20675
July 2001 29-of-61

// return individual buffer locations
unsigned char Header::operator[] (int i)
{

Bufferize();

return hBuffer[i];
}

// return the header buffer
Header::operator unsigned char*()
{

Bufferize();

return hBuffer;
}

// place the data into the buffer
void Header::Bufferize()
{

// this method places the required data into the buffer and avoids structure
// alignment and padding issues

// an index into the buffer
unsigned char* pBuffer = hBuffer;

// fill in the type byte
*(pBuffer++) = TypeFlag.GetFlag();

// copy each element into the buffer
// this technique, while tedious, avoids size problems and alignment padding issues
pBuffer = reinterpret_cast<unsigned char*>(memcpy(pBuffer, reinterpret_cast<unsigned char*>(&HeaderLength), sizeof(HeaderLength))) + sizeof(

HeaderLength);
pBuffer = reinterpret_cast<unsigned char*>(memcpy(pBuffer, reinterpret_cast<unsigned char*>(&DataLength), sizeof(DataLength))) + sizeof(

DataLength);
pBuffer = reinterpret_cast<unsigned char*>(memcpy(pBuffer, reinterpret_cast<unsigned char*>(&SequenceNumber), sizeof(SequenceNumber))) + sizeof(

SequenceNumber);
pBuffer = reinterpret_cast<unsigned char*>(memcpy(pBuffer, reinterpret_cast<unsigned char*>(&DestinationAddress), sizeof(DestinationAddress))) + sizeof(

DestinationAddress);
pBuffer = reinterpret_cast<unsigned char*>(memcpy(pBuffer, reinterpret_cast<unsigned char*>(&SourceAddress), sizeof(SourceAddress))) + sizeof(

SourceAddress);
}

// set methods
void Header::SetTypeFlag(unsigned char theTypeFlag)
{

TypeFlag.SetFlag(theTypeFlag);
}

void Header::SetType(unsigned char theType)
{

TypeFlag.SetType(theType);
}

void Header::SetHeaderLength(unsigned char theHeaderLength)
{

HeaderLength = theHeaderLength;
}

BlackJack Data Link Protocol JPL-D-20675
July 2001 30-of-61

void Header::SetDataLength(unsigned short theDataLength)
{

DataLength = theDataLength;
}

void Header::SetSequenceNumber(unsigned short theSequenceNumber)
{

SequenceNumber = theSequenceNumber;
}

void Header::SetDestinationAddress(unsigned short theDestinationAddress)
{

DestinationAddress = theDestinationAddress;
}

void Header::SetSourceAddress(unsigned short theSourceAddress)
{

SourceAddress = theSourceAddress;
}

// get methods
unsigned char Header::GetTypeFlag() const
{

return TypeFlag.GetFlag();
}

unsigned char Header::GetHeaderLength() const
{

return HeaderLength;
}

unsigned short Header::GetDataLength() const
{

return DataLength;
}

unsigned short Header::GetSequenceNumber() const
{

return SequenceNumber;
}

unsigned short Header::GetDestinationAddress() const
{

return DestinationAddress;
}

unsigned short Header::GetSourceAddress() const
{

return SourceAddress;
}

BlackJack Data Link Protocol JPL-D-20675
July 2001 31-of-61

// CRC.h
//
// CRC Support
//
// Interface for the CRC class.
// This class provides standard CRC-16 generation and checking.

// only include this file once per compilation
#ifndef _CRC_H_
#define _CRC_H_

class CRC
{

protected:
// a table of lookup values used to generate the CRC
static const unsigned short Table[256];

// the current value of the CRC
unsigned short Val;

public:
// constructor - initializes the internal member, Val
// to the provided value, defaults to zero
CRC(unsigned short Value = 0);

// destructor does nothing, this is a place-holder
~CRC();

// resets the CRC to zero
void Reset();

//operators
// the basic CRC operation is non-trivial and involves a lookup and some
// mathematical (XOR & shifts (integer multiply & divide) operations:
// NewCRC = (CurrentCRC >> 8) XOR (TableLookup[(CurrentCRC << 8) XOR NewCharacter)

// this operator is provided for the type char (signed) and passes its
// argument to the operator()(const unsigned char c) below
unsigned short operator() (const char c);

// this operator takes a single character and adds it to the CRC in the complex
// manner described above
unsigned short operator() (const unsigned char c);

// this operator is provided for a buffer of type char (signed) and passes its
// arguments to the operator()(const unsigned char* cp, const unsigned char* End) below
unsigned short operator() (const char *cp, const char *End);

// this operator takes a buffer and adds each character to the CRC sequentially
// using the same operations described above
unsigned short operator() (const unsigned char*cp, const unsigned char *End);

// this operator is the unsigned short conversion operator for this type.
// it returns the CurrentCRC
operator unsigned short &();

};

#endif _CRC_H_

BlackJack Data Link Protocol JPL-D-20675
July 2001 32-of-61

// CRC.cpp
//
// CRC Support
//
// Implementation for the CRC class.
// This class provides standard CRC-16 generation and checking.

#include "CRC.h"

#pragma export on

// CRC-16 constant array...
// from Usenet contribution by Mark G. Mendel, Network Systems Corp.
// (ihnp4!umn-cs!hyper!mark)
const unsigned short CRC::Table[] =
{

//00
 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,

 //10
 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,

0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,

//20
 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,

//30
 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,

//40
 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,

//50
 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,

//60
 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,

//70
 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,

//80
 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,

//90
 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,

//A0
 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,

//B0
 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,

BlackJack Data Link Protocol JPL-D-20675
July 2001 33-of-61

 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,

//C0
 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,

//D0
 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,

//E0
 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,

//F0
 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0
};

CRC::CRC(unsigned short Value) :
Val(Value)

{}

CRC::~CRC()
{}

void CRC::Reset()
{

Val = 0;
}

unsigned short CRC::operator() (const char c)
{

return operator() (static_cast<const unsigned char>(c));
}

unsigned short CRC::operator() (const unsigned char c)
{

unsigned short interimChar = c;

return Val = (Val << 8) ^ Table[(Val >> 8) ^ interimChar];;
}

unsigned short CRC::operator() (const char *cp, const char *End)
{

return operator() ((const unsigned char *)(cp), (const unsigned char *)(End));
};

unsigned short CRC::operator() (const unsigned char *cp, const unsigned char *End)
{

while(cp < End)
{

Val = (Val << 8) ^ Table[(Val >> 8) ^ static_cast<unsigned short>(*cp++)];
}

return Val;

BlackJack Data Link Protocol JPL-D-20675
July 2001 34-of-61

}

CRC::operator unsigned short &() { return Val; };

#pragma export reset

BlackJack Data Link Protocol JPL-D-20675
July 2001 35-of-61

// RcvBuffer.h
//
// Interface for a receive buffer class
// when streams are decoded, completely decoded packets are stored in objects of this type
// these objects may contain multiple TB or BJ packets and may need further decoding to
// separate into parts
// this class does not attempt to decode the contents of the buffer
// this class is designed to be thread-safe and supports queue-based containers

// only include this file once per compilation
#ifndef _RCVBUFFER_H_
#define _RCVBUFFER_H_

#include "FlagByte.h"

class RcvBuffer
{

public:
// the buffer carries a notion of the status of the buffer
// in terms of decoding a packet
// really bad packets (i.e. cannot be decoded) are dumped
enum
{

// set during decoding while data is added to this buffer
NoPacketYet = 0x0000,

// oddities, not necessarily errors
BigHeader = 0x0001, // header's too big
LargeData = 0x0002, // this is a large packet
SmallData = 0x0004, // this is a small packet
CRCDidNotCheck = 0x0008, // the CRC was bad
OddityBits = 0x000F, // mask for these values

// errors from the packet processor
ShortPacket = 0x0010, // packet was short
UnknownEscape = 0x0020, // unknown escape sequence
BadCRCBits = 0x0040, // the CRC type is invalid
ConfusedMachine = 0x0080, // the state machine is confused
ErrorBits = 0x00F0, // mask for these values

// aggregates of the above values
GoodPacketRcvd = 0x1000, // Good CRC no decoding errors
PacketError = 0x8000 // An error occured

};

private:
// this is the actual buffer of the class
// the size of the buffer is NOT dynamic after construction
// this is designed so that there is a one-to-one relationship between the packets
// and objects of this class
unsigned char* Buffer; // pointer to the buffer
unsigned char* BufferIndex; // a moving pointer to the buffer insides, used internally
unsigned short DataLen; // the length of the buffer from the DataLen header field
unsigned short CurrentLen; // the "filled" portion of the buffer, used for error checking

// status Byte
unsigned short Status; // carries the packet status as described above

// Information about the received buffer
// Flag Byte

BlackJack Data Link Protocol JPL-D-20675
July 2001 36-of-61

FlagByte InfoByte; // carries the packet flag byte values

// Sequence Number - as transmitted in the header
// use for re-assembly
unsigned short SequenceNumber;

// address bytes - as transmitted in the header
unsigned short DestAddress;
unsigned short SourceAddress;

public:
// a default constructor, not really used for anything except
// making buffers that will later be filled by an assignment
// this makes a one-byte buffer
// status is set to PacketError to indicate it is not initialized
RcvBuffer();

// constructs a buffer object of length "theDataLen" and allocates the
// necessary memory for that object
// status is set to PacketError to indicate it is not initialized
RcvBuffer(unsigned short theDataLen);

// the copy constructor for this class that actually allocates
// new memory and copies the contents of the buffers rather
// than the buffer pointers
// length, status, etc. are all copied as well
RcvBuffer(const RcvBuffer& theRcvBuffer);

// deletes any memory that's allocated prior to destruction
~RcvBuffer();

// this method returns the set length of the data buffer
unsigned short GetDataLen() const;

// this method returns the actual written length of the buffer
unsigned short GetActualLen() const;

// this method sets the status of the packet to one of the three possible
// values as described above
void SetStatus(unsigned short theStatus);

// this method returns the status of the packet
unsigned short GetStatus() const;

// status checkers
inline bool HasOddities() { return (Status & OddityBits); }
inline bool HasError() { return (Status & PacketError); }
inline bool IsOK() { return (Status & GoodPacketRcvd); }

// these methods access the information transmitted in the header of the packet
// this method sets the InfoByte of the packet
void SetInfoByte(FlagByte theInfoByte);
void SetSequenceNumber(unsigned short theSequenceNumber);
void SetDestAddress(unsigned short theDestAddress);
void SetSourceAddress(unsigned short theSourceAddress);

// this method returns the status of the packet
FlagByte GetInfoByte() const;
unsigned short GetSequenceNumber() const;
unsigned short GetDestAddress() const;
unsigned short GetSourceAddress() const;

// InfoByte checkers

BlackJack Data Link Protocol JPL-D-20675
July 2001 37-of-61

inline bool NeedsResponse() { return (InfoByte.isReqACK()); }

// this method appends a byte to the data buffer
// and checks to make sure that the buffer doesn't overflow
// returns the number of bytes written to the buffer
unsigned short AddByte(unsigned char theByteToAdd); // adds a byte to the end of the buffer

// this is the assignment operator that actually copies the buffer rather
// than just copying the the pointer
RcvBuffer& operator=(const RcvBuffer& rhs);

// this operator extracts a single, indexed byte from the buffer
// used to support output operators (i.e. <<)
unsigned char operator[](int i) const;

// this is the unsigned char* conversion operator that
// returns a pointer to the actual data buffer

operator unsigned char*();

// this is the less than operator used to support containers
bool operator<(const RcvBuffer& rhs) const;

};

#endif _RCVBUFFER_H_

BlackJack Data Link Protocol JPL-D-20675
July 2001 38-of-61

// RcvBuffer.cpp
//
// Implementation of a receive buffer class

#include <cstring>

#include "RcvBuffer.h"

using namespace std;

#pragma export on
// constructor/destructor
RcvBuffer::RcvBuffer() :

DataLen(1),
CurrentLen(0)

{
Buffer = new unsigned char[1];
BufferIndex = Buffer;
Status = PacketError;

}

RcvBuffer::RcvBuffer(unsigned short theDataLen) :
DataLen(theDataLen),
CurrentLen(0)

{
if(DataLen < 1)
{

DataLen = 1;
}

Buffer = new unsigned char[DataLen];
BufferIndex = Buffer;
Status = PacketError;

}

RcvBuffer::RcvBuffer(const RcvBuffer& theRcvBuffer) :
DataLen(theRcvBuffer.DataLen),
Status(theRcvBuffer.Status),
CurrentLen(theRcvBuffer.CurrentLen)

{
Buffer = new unsigned char[theRcvBuffer.DataLen];
memcpy(Buffer, theRcvBuffer.Buffer, theRcvBuffer.DataLen);

// set the buffer index
BufferIndex = Buffer + CurrentLen;

}

RcvBuffer::~RcvBuffer()
{

if(Buffer)
{

delete [] Buffer;
}

}

// buffer information & maintenance

BlackJack Data Link Protocol JPL-D-20675
July 2001 39-of-61

unsigned short RcvBuffer::GetDataLen() const
{

return DataLen;
}

unsigned short RcvBuffer::GetActualLen() const
{

return CurrentLen;
}

void RcvBuffer::SetStatus(unsigned short theStatus)
{

Status = theStatus;
}

unsigned short RcvBuffer::GetStatus() const
{

return Status;
}

void RcvBuffer::SetInfoByte(FlagByte theInfoByte)
{

InfoByte = theInfoByte;
}

void RcvBuffer::SetSequenceNumber(unsigned short theSequenceNumber)
{

SequenceNumber = theSequenceNumber;
}

void RcvBuffer::SetDestAddress(unsigned short theDestAddress)
{

DestAddress = theDestAddress;
}

void RcvBuffer::SetSourceAddress(unsigned short theSourceAddress)
{

SourceAddress = theSourceAddress;
}

FlagByte RcvBuffer::GetInfoByte() const
{

return InfoByte;
}

unsigned short RcvBuffer::GetSequenceNumber() const
{

return SequenceNumber;
}

unsigned short RcvBuffer::GetDestAddress() const
{

return DestAddress;

BlackJack Data Link Protocol JPL-D-20675
July 2001 40-of-61

}

unsigned short RcvBuffer::GetSourceAddress() const
{

return SourceAddress;
}

// adds a byte to the buffer
unsigned short RcvBuffer::AddByte(unsigned char theByteToAdd)
{

// this prevents us from overflowing our buffer
// as long as the current count is less than or
// equal to the total buffer size (DataLen)
if(++CurrentLen <= DataLen)
{

*BufferIndex = theByteToAdd;
++BufferIndex;

}

return CurrentLen;
}

// operators
// assignment operator
RcvBuffer& RcvBuffer::operator=(const RcvBuffer& rhs)
{

// simple members
DataLen = rhs.DataLen;
CurrentLen = rhs.CurrentLen;
Status = rhs.Status;

// delete any previous buffer
if(Buffer)
{

delete [] Buffer;
}

// copy the contents of the right-hand side buffer
Buffer = new unsigned char[DataLen];
memcpy(Buffer, rhs.Buffer, DataLen);

// set the buffer index
BufferIndex = Buffer + CurrentLen;

return *this;
}

// extracts a byte from the buffer
unsigned char RcvBuffer::operator[](int i) const
{

return Buffer[i];
}

// returns a pointer to the buffer
RcvBuffer::operator unsigned char*()
{

return Buffer;
}

BlackJack Data Link Protocol JPL-D-20675
July 2001 41-of-61

#pragma export reset

BlackJack Data Link Protocol JPL-D-20675
July 2001 42-of-61

// RcvPacket.h
//
// Interface for the receive packet class
//
// this class decodes link protocol using a state machine
// decoded packets are placed into RcvBuffer's and onto
// a queue where they can be extracted at a later time
// the RcvBuffer contains only the data and is de-escaped
// and the CRC is checked, if present
// this decoder works on a stream of data and will find
// the packet boundaries itself
// errors (dropped bytes, etc.) will cause the state
// machine to reset and begin looking for another packet
// usually, two packets are lost in this process, the erroneous packet
// and the following packet

// only include this file once per compilation
#ifndef _RCVPACKET_H_
#define _RCVPACKET_H_

#include <string>
#include <deque>
#include <queue>

#include "FlagByte.h"
#include "Header.h"
#include "CRC.h"
#include "RcvBuffer.h"

using namespace std;

class RcvPacket
{

private:
// these are the internal states of the decoder state machine
typedef enum
{

WaitForOpen, // waiting for an open flag, 0x02
ReadType, // read the TypeFlag (see FlagByte.h)
ReadHeaderLen, // read the header length (see Header.h)
ReadDataLen, // read the two data length bytes
ReadSeqNum, // read the two sequence number bytes (if present)
ReadDest, // read the two destination bytes (if present)
ReadSrc, // read the two source bytes (if present)
CollectingData, // read the data of the packet and add to a RcvBuffer (see RcvBuffer.h)
ReadCRC, // read the CRC bytes (if present)
GotDLE // got an escape byte (0x10), translate the next byte 0x45->0x10,, 0x4F->0x02

}
PacketState;

// enums for error/oddity detection
enum
{

LargeHeaderLimit = 10, // headers are not normally more than 10 bytes
LargeDataLimit = 2048, // fairly arbitrary, data shouldn't larger than this
SmallDataLimit = 0 // there shouldn't be any empty packets

};

private:

BlackJack Data Link Protocol JPL-D-20675
July 2001 43-of-61

// state machine members
PacketState CurrentState; // the current state of the state machine
PacketState LastState; // the state to return to after GotDLE state
unsigned char HeaderCount; // the number of header bytes to read, supports any number to 255
unsigned short DataCount; // the number of data bytes to read (to 65535)
unsigned long ByteCount; // a reused temporary byte count used while reading
unsigned long theRunningCRC; // the calculated CRC during decoding
CRC theCRC; // the CRC object used to calculate the CRC

// the running status used to tag each completed packet
// each packet is tagged with a status that indicates how well it was decoded
// i.e. the CRC didn't check or the data section was large, etc...
unsigned short RunningResult;

// packet data - basically the header (see Header.h for a description of these bytes)
FlagByte PacketType; // required
unsigned char HeaderLen; // required
unsigned short DataLen; // required
unsigned short SeqNum; // optional
unsigned short Dest; // optional
unsigned short Src; // optional
unsigned short theRcvdCRC; // optional, depending on PacketType

// as packets are decoded, the resulting bytes are stored in an object of type RcvBuffer
// this pointer points to the buffer supporting the currently decoded packet
// as packets are completed, they are placed on the PacketQueue (see next member)
// new RcvBuffers are allocated after the DataLen is read out of the next packet's
// header (see Header.h)
RcvBuffer* currentBuffer;

// this is a queue of RcvBuffers where completed buffers
// are stored until they can be retrieved
priority_queue< RcvBuffer > PacketQueue;

public:
// the default constructor sets up the state to WaitForOpen
RcvPacket();

// this operator decodes the portion of the stream delineated by
// the start and end pointers and returns the number of complete
// packets on the queue, including old ones not yet retrieved
int operator() (unsigned char* start, unsigned char* end);

// this RcvBuffer conversion operator returns the oldest completed
// packet on the queue

operator RcvBuffer();

private:
// this method is the actual state machine that decodes a byte at a time
unsigned short ProcessByte(unsigned char theByte);

};

#endif _RCVPACKET_H_

BlackJack Data Link Protocol JPL-D-20675
July 2001 44-of-61

// RcvPacket.cpp
//
// Implementation of the receive packet base class

#include "CRC.h"
#include "RcvPacket.h"
#include "RcvBuffer.h"

#pragma export on
// default constructor
RcvPacket::RcvPacket() :

CurrentState(WaitForOpen), // set the initial state machine to look for OpenFlags
currentBuffer(0L), // zero the initial buffer pointer
RunningResult(RcvBuffer::NoPacketYet) // initial result is no result

{}

// poll for complete packets, bytes are buffered by the port via interrupts
// this routine will put your thread to sleep until data is received
int RcvPacket::operator() (unsigned char* start, unsigned char* end)
{

// keep track of the current byte to process
unsigned char* currByte = start;

// process all the bytes in the buffer
while(currByte <= end)
{

// process a byte and see if a complete packet is formed
RunningResult |= ProcessByte(*(currByte++));

// if the running result contains errors or indicates the end of a packet
if(RunningResult & (RcvBuffer::ErrorBits | RcvBuffer::GoodPacketRcvd))
{

// check for error bits
if(RunningResult & RcvBuffer::ErrorBits)
{

// if some error bit was set after processing this byte
// then set the overall status indicator to PacketError
RunningResult |= RcvBuffer::PacketError;

}

// create a buffer if necessary since we may have
// a bad packet before buffer creation
if(currentBuffer == 0L)
{

// allocate a new empty buffer
currentBuffer = new RcvBuffer;

}

// set the status of the packet buffer
currentBuffer -> SetStatus(RunningResult);

// set the infobyte of the packet buffer
currentBuffer -> SetInfoByte(PacketType);

// put the buffer on the queue
PacketQueue.push(*currentBuffer);

// reset the packet status running result
RunningResult = RcvBuffer::NoPacketYet;

BlackJack Data Link Protocol JPL-D-20675
July 2001 45-of-61

// remove the buffer and set the pointer to NULL
delete currentBuffer;
currentBuffer = 0L;

// a new buffer object will be allocated by ProcessByte
// after it knows how big the incoming next packet is

}
}

// return the number of good packets
return PacketQueue.size();

}

// method to extract buffers from the object's
// buffer queue, returns an actual buffer
RcvPacket::operator RcvBuffer()
{

// if there are buffers in the queue
if(!PacketQueue.empty())
{

// construct a new buffer on the stack
// with the contents of the next Queue element
// and remove the element from th Queue
RcvBuffer retVal(PacketQueue.top());

// remove the element from the Queue
PacketQueue.pop();

// pass it back to the caller
return retVal;

}
else
{

// the Queue is empty, so make a NULL buffer
// to return to the caller
RcvBuffer retVal(0L);

// pass it back to the caller
return retVal;

}
}

// process buffer bytes one at a time
// this method operates as a state machine - lots of code but fast execution
unsigned short RcvPacket::ProcessByte(unsigned char theByte)
{

// each time through the state machine, return some status
// NoPacketYet is the default, no-error status
unsigned short retVal = RcvBuffer::NoPacketYet;

// before we process the byte, check for an out of place open flag
// in other words, we got an OpenFlag before we expected it
// so the packet is short and that error is set
if((theByte == Header::OpenFlag) && (CurrentState != WaitForOpen))
{

// we've got a short packet let's return that error
retVal = RcvBuffer::ShortPacket;

// set the state to WaitForOpen Flag to start the new packet
// this will cause the byte to be processed below in this
// pass of the state machine

BlackJack Data Link Protocol JPL-D-20675
July 2001 46-of-61

CurrentState = WaitForOpen;
}

// ignore escapes if we're waiting for the OpenFlag
// if the character is an escape, DLE = 0x10
if((CurrentState != WaitForOpen) && (theByte == Header::DLE))
{

// save off the current state of the machine
LastState = CurrentState;

// take a detour to process the escaped byte
// which will be the next byte processed
CurrentState = GotDLE;

}
else
{

// we're de-escaping a character if the state is GotDLE
// this is done prior to normal processing of the byte
// in other words, we convert the escaped value and then
// process it in the same pass
if(CurrentState == GotDLE)
{

// after this byte, return to the last state
// so that the state machine's switch will
// process the converted byte
CurrentState = LastState;

// let's de-escape the data
// right now we only know two values,
// all others are errors
switch(theByte)
{

case Header::OpenESC:
theByte = Header::OpenFlag;
break;

case Header::ESCESC:
theByte = Header::DLE;
break;

default:
// we've got a bad escape sequence, let's return that error
retVal = RcvBuffer::UnknownEscape;

// set the state to WaitForOpen Flag to start a new packet
// this will effectively dump the rest of the corrupted
// packet to the bit bucket
CurrentState = WaitForOpen;
break;

}
}

// process the characters based on the current state
switch(CurrentState)
{

// look for the OpenFlag
// this dumps bytes until the OpenFlag is received
case WaitForOpen:

if(theByte == Header::OpenFlag)
{

// reset for a new packet
// note that the OpenFlag does not count in the header size,
// data size, nor is it stored anywhere

BlackJack Data Link Protocol JPL-D-20675
July 2001 47-of-61

HeaderCount = 0; // initialize the header byte count
DataCount = 0; // initialize the data byte count
CurrentState = ReadType; // set the state for the next byte
theCRC.Reset(); // initialize the CRC calculator

}
break;

// get the required type flag
case ReadType:

++HeaderCount; // this is a header byte
PacketType.SetFlag(theByte); // store the type flag

if(PacketType.ValidCRCBits()) // verify that the CRC bits in the
{ // the flag are valid

theRunningCRC = theCRC(theByte); // add this byte to the CRC
CurrentState = ReadHeaderLen; // now look for the header length

}
else
{ // the CRC bits are not valid

retVal = RcvBuffer::BadCRCBits; // set the return type for an error
CurrentState = WaitForOpen; // state to WaitForOpen to start the new packet

}
break;

// get the length of the header (without escapes) - it is variable up to 256
case ReadHeaderLen:

++HeaderCount; // this is a header byte
HeaderLen = theByte; // store the header length
CurrentState = ReadDataLen; // now look for the data length
ByteCount = 0; // reset the byte count
theRunningCRC = theCRC(theByte); // add this byte to the CRC

if(HeaderLen > LargeHeaderLimit) // nominal maximum header length
{

retVal = RcvBuffer::BigHeader; // return this as an oddity
} // but keep processing the packet
break; // i.e. don't change the state to WaitForOpen

// get the length of the data (without escapes) - it is variable up to 65535
case ReadDataLen:

((char)&DataLen + ByteCount++) = theByte; // store the byte
++HeaderCount; // this is a header byte
theRunningCRC = theCRC(theByte); // add this byte to the CRC

if(ByteCount >= sizeof(DataLen)) // check to see if we got it all
{

if(currentBuffer) // allocate a new buffer for the data
{

delete currentBuffer; // toss any old buffer, just in case
}

currentBuffer = new RcvBuffer(DataLen); // the new buffer has the received length

if(HeaderCount >= HeaderLen) // if at the end of the header
{

CurrentState = CollectingData; // go collect data
}
else
{

ByteCount = 0; // reset the byte count
CurrentState = ReadSeqNum; // now look for sequence number

}

BlackJack Data Link Protocol JPL-D-20675
July 2001 48-of-61

if(DataLen >= LargeDataLimit) // check for large packets
{

retVal = RcvBuffer::LargeData; // return this as an oddity
} // but keep processing the packet

if(DataLen <= SmallDataLimit) // check for empty packets
{

retVal = RcvBuffer::SmallData; // return this as an oddity
} // but keep processing the packet

}
break;

// get the optional sequence number
case ReadSeqNum:

((char)&SeqNum + ByteCount++) = theByte; // store the byte
++HeaderCount; // this is a header byte
theRunningCRC = theCRC(theByte); // add this byte to the CRC

if(ByteCount >= sizeof(SeqNum)) // check to see if we got it all
{

currentBuffer -> SetSequenceNumber(SeqNum); // set the return packet sequence number

if(HeaderCount >= HeaderLen) // if at the end of the header
{

CurrentState = CollectingData; // go collect data
}
else
{

ByteCount = 0; // reset the byte count
CurrentState = ReadDest; // now look for destination number

}
}
break;

// get the optional destination
case ReadDest:

((char)&Dest + ByteCount++) = theByte; // store the byte
++HeaderCount; // this is a header byte
theRunningCRC = theCRC(theByte); // add this byte to the CRC

if(ByteCount >= sizeof(Dest)) // check to see if we got it all
{

currentBuffer -> SetDestAddress(Dest); // set the return packet destination address

if(HeaderCount >= HeaderLen) // if at the end of the header
{

CurrentState = CollectingData; // go collect data
}
else
{

ByteCount = 0; // reset the byte count
CurrentState = ReadSrc; // now look for destination number

}
}
break;

// get the optional source
case ReadSrc:

((char)&Src + ByteCount++) = theByte; // store the byte
++HeaderCount; // this is a header byte
theRunningCRC = theCRC(theByte); // add this byte to the CRC

if(ByteCount >= sizeof(Src)) // check to see if we got it all

BlackJack Data Link Protocol JPL-D-20675
July 2001 49-of-61

{
currentBuffer -> SetSourceAddress(Src); // set the return packet source address

ByteCount = 0; // reset the byte count
CurrentState = CollectingData; // now look for destination number

}
break;

case CollectingData:
theRunningCRC = theCRC(theByte); // add this byte to the CRC

// if we're at the end of the header do something with the characters
if(HeaderCount >= HeaderLen)
{

// this is where the data inside the link protocol is stored
// once we've stored the appropriate number of bytes
// check for the CRC bytes
if((currentBuffer -> AddByte(theByte)) >= DataLen)
{

// determine if we need to check the CRC
if(PacketType.hasCRC())
{

ByteCount = 0; // yeah, we'll read the CRC
CurrentState = ReadCRC; // set that state

}
else
{

retVal = RcvBuffer::GoodPacketRcvd; // we've completed this packet
CurrentState = WaitForOpen; // start looking for the next OpenFlag

}
}

}
else
{

// ignore any data after the header if the header is longer than we think
++HeaderCount;

}
break;

// get the optional CRC
case ReadCRC:

((char)&theRcvdCRC + ByteCount++) = theByte; // store the byte

// check to see if we got it all
if(ByteCount >= sizeof(theRcvdCRC))
{

// Check the CRC
if(theRcvdCRC == theRunningCRC)
{

retVal = RcvBuffer::GoodPacketRcvd; // the CRC matches set it good
}
else
{

retVal = RcvBuffer::CRCDidNotCheck; // the CRC did not match
}

// regardless of the outcome of the CRC
// start looking for the next packet
CurrentState = WaitForOpen;

}
break;

default:

BlackJack Data Link Protocol JPL-D-20675
July 2001 50-of-61

// we're confused abort and
// start looking for the next packet
retVal = RcvBuffer::ConfusedMachine;
CurrentState = WaitForOpen;
break;

}
}

return retVal;
}

bool RcvBuffer::operator<(const RcvBuffer& rhs) const
{

return InfoByte.Prio() < rhs.InfoByte.Prio();
}

#pragma export reset

BlackJack Data Link Protocol JPL-D-20675
July 2001 51-of-61

// SendPacket.h
//
// Interface for the send packet class
// this class formats buffers, adds the link protocol elements (header & CRC)
// and provides support methods to output the protocol packets to classes
// that take buffers as inputs
// the input interface is the constructor, the primary output interface is
// an unsigned char* conversion operator
// this class owns its data buffer and performs a copy on creation that allows
// the incoming data to go invalid after construction
// many features are to support queuing of objects of this type

// only include this file once per compilation
#ifndef _SENDPACKET_H_
#define _SENDPACKET_H_

#include "Header.h"
#include "CRC.h"

// if compiled under the NewReceiver (Blackjack or BJ)
// then include the receiver serial port definitions
#ifdef _NR_
 #include "SerialPort.h"
#endif _NR_

class SendPacket
{

private:
// this is the largest size of a protocol packet
// this size is due to the two byte DataLength field of the header (16-bits)
enum
{

MaxOutPacketSize = 65535
};

private:
// the link protocol header to transmit, see Header.h
Header packetHeader;

// this buffer holds the incoming data to be converted to link protocol
// it is allocated and deallocated as necessary
// the buffer consists of two parts, a pointer to the allocated data
// and the size of that allocation as determined by the constructor arguments
unsigned char* dataBuffer;
short int dataBufferSize;

// this buffer holds the formatted output data after the link protocol has
// been applied to the dataBuffer
// this buffer is often larger than the data buffer due to header overhead
// and escape sequences to remove 0x02, and 0x10 from the data stream
// the output buffer is reallocated and reformatted each time the packet
// is used for output rather than when it is used for input
// this allows for the construction of this class to happen quickly while
// outputs can take more time in a different execution context if necessary
// (supports queuing)
unsigned char* outBuffer;
short int outBufferSize;

// this is the CRC of the packet, it is calculated at output time as the
// output buffer is formatted, it is only appended to the packet if the

BlackJack Data Link Protocol JPL-D-20675
July 2001 52-of-61

// typeflag bits in the header indicated that the CRC is present (see FlagByte.h)
CRC packetCRC;

// a rolling sequence number used to provide sequencing if necessary (see Header.h)
// this static remains in the library for all instances of this class to share so that the
// sequence numbers are monotonic and so that they have no holes
// the sequence numbers will roll over from 0xFFFF to 0x0000 automatically
static short SequenceNum;

public:
// constructors / destructor
// the default constructor does nothing except zero
// the data buffer and output buffer pointers
SendPacket();

// this copy constructor copies the packet's buffers byte for byte so
// that these objects can be copied and then destroyed (supports queuing)
SendPacket(const SendPacket& theSendPacket);

// this is the primary constructor that is used to create a link protocol packet
// the contents pointed to by bufferToSend are copied into the data buffer (bufferSize bytes worth)
// the priority of the packet is supported so that priority queues can be used in the future
// to send packets out of band, the default setting is zero (0-3 possible settings) which is lowest
SendPacket(const unsigned char* bufferToSend, const int bufferSize, const int Priority = 0);

// yeah! a destructor that actually does something, this destructor deletes the buffers
// and de-allocates the memory before destruction
~SendPacket();

// this method allows you to add more data to the packet (up to 65535 total bytes)
// and returns the new size of the packet
// if the new data would overflow the packet, the data is ignored and the returned
// size does not change
long AppendPacket(const unsigned char* theBuffer, const int bufferSize);

// this method zeros the data buffers and de-allocates any memory associated with them
void ZeroPacket();

// this method returns the size of the OUTPUT buffer, which is different than the
// data buffer and includes everything in the buffer including the open flag, header,
// and CRC (if present) as well as all the escape bytes
// this method is useful for calculating the transmit time of the packet
int GetOutBufferSize();

// this operator formats the data buffer by escaping necessary bytes, adds the
// open flag, header and CRC, if necessary, and places those bytes in the output buffer
// it returns a pointer to the output buffer
operator unsigned char*();

// this is the assignment operator that actually copies the data buffers rather
// than just copying the the pointers
SendPacket& operator=(const SendPacket& rhs);

// this operator provides support for queue-based containers that need to
// sort packets using less than
// packets are sorted based on their priority
bool operator<(const SendPacket& rhs) const;

public:
// access commands to manipulate the packet's header
void SetTypeFlag(unsigned char theTypeFlag); // set the raw Flag Value
void SetTypeToReqACK(); // set to request an acknowledge
void SetTypeToTransport(); // set to normal transport packet

BlackJack Data Link Protocol JPL-D-20675
July 2001 53-of-61

void SetTypeToNAQ(); // set as a Negative Acknowledgement
void SetTypeToACK(); // set as a Positive Acknowledgement
void SetPriority(int thePriority); // set the priority
void SetToUseSequenceNumber(); // set to use the sequence number
void SetDestinationAddress(unsigned short theDestination); // set to use a destination address
void SetSourceAddress(unsigned short theSource); // set to use a source address

private:
// this is the method that actually takes the data buffer and reformats it
// according to the protocol (see operator unsigned char*() description)
void PrepareBuffer();

// this method escapes bytes
// it takes a buffer pointer and writes the escaped bytes
// according to this rule:
// STX (Open Flag) -> DLE, "O"
// DLE (Escape) -> DLE, "E"
// others -> unmodified
// it returns the number of bytes written to the buffer (1 or 2)
int EscapeAndWrite(unsigned char theByte, unsigned char* theBuffer);

// if compiled under the NewReceiver (Blackjack or BJ)
// then allow the overloaded operator<< to access our data members for output support
// to receiver serial ports
// this operator, implemented as a part of this library, takes a SendPacket and
// outputs it as a buffer to the serial port which locks the port during this packet
// preventing the interleaving of packets and making this class thread-safe
#ifdef _NR_

friend SerialPort& operator<< (SerialPort& s, SendPacket& thePacket);
#endif _NR_
};

#endif _SENDPACKET_H_

BlackJack Data Link Protocol JPL-D-20675
July 2001 54-of-61

// SendPacket.cpp
//
// Implementation of the send packet base class

#include <cstring>

#include "FlagByte.h"

#include "SendPacket.h"

using namespace std;

#ifdef _NR_
#include "SerialPort.h"
#endif _NR_

#pragma export on
short SendPacket::SequenceNum = 0;

// constructors/destructor
SendPacket::SendPacket() :

dataBuffer(0),
outBuffer(0)

{
// bump the sequence number and store it in the header
packetHeader.SetSequenceNumber(++SequenceNum);

}

SendPacket::SendPacket(const SendPacket& theSendPacket) :
packetHeader(theSendPacket.packetHeader),
dataBuffer(0),
outBuffer(0),
packetCRC(theSendPacket.packetCRC)

{
// allocate the data buffer and copy the data into it
dataBuffer = new unsigned char[theSendPacket.dataBufferSize];
memcpy(dataBuffer, theSendPacket.dataBuffer, theSendPacket.dataBufferSize);
dataBufferSize = theSendPacket.dataBufferSize;

// allocate the output buffer and copy the data into it
outBuffer = new unsigned char[theSendPacket.outBufferSize];
memcpy(outBuffer, theSendPacket.outBuffer, theSendPacket.outBufferSize);
outBufferSize = theSendPacket.outBufferSize;

}

SendPacket::SendPacket(const unsigned char* bufferToSend, const int bufferSize, const int Priority) :
packetHeader(bufferSize),
outBuffer(0)

{
// bump the sequence number and store it in the header
packetHeader.SetSequenceNumber(++SequenceNum);

// allocate the buffer and copy the data into it
dataBuffer = new unsigned char[bufferSize];
memcpy(dataBuffer, bufferToSend, bufferSize);
dataBufferSize = bufferSize;

BlackJack Data Link Protocol JPL-D-20675
July 2001 55-of-61

FlagByte theFlag(packetHeader.GetTypeFlag());
theFlag.SetPrio(Priority);
packetHeader.SetTypeFlag(theFlag);

}

SendPacket::~SendPacket()
{

if(dataBuffer)
{

delete [] dataBuffer;
}

if(outBuffer)
{

delete [] outBuffer;
}

}

long SendPacket::AppendPacket(const unsigned char* theBuffer, const int bufferSize)
{

if((dataBufferSize + bufferSize) < SendPacket::MaxOutPacketSize)
{

// hold the buffer with a temporary pointer
unsigned char* oldBuffer = dataBuffer;

// allocate a new and larger buffer
dataBuffer = new unsigned char[bufferSize + dataBufferSize];

// copy the previous buffer to the new buffer
memcpy(dataBuffer, oldBuffer, dataBufferSize);

// append the new buffer to the old data in the new buffer
memcpy(dataBuffer + dataBufferSize, theBuffer, bufferSize);

// adjust the buffer size
dataBufferSize += bufferSize;

// remove the old data
delete [] oldBuffer;

// adjust the data size in the header
packetHeader.SetDataLength(dataBufferSize);

}

// return the new size
return dataBufferSize;

}

void SendPacket::ZeroPacket()
{

if(dataBuffer)
{

delete [] dataBuffer;
}
dataBuffer = 0;
dataBufferSize = 0;

if(outBuffer)
{

BlackJack Data Link Protocol JPL-D-20675
July 2001 56-of-61

delete [] outBuffer;
}
outBuffer = 0;
outBufferSize = 0;

}

int SendPacket::GetOutBufferSize()
{

PrepareBuffer();
return outBufferSize;

}

SendPacket::operator unsigned char*()
{

PrepareBuffer();
return outBuffer;

}

SendPacket& SendPacket::operator=(const SendPacket& rhs)
{

// take care of the header
packetHeader = rhs.packetHeader;

// take care of the buffers (data & out)
// allocate the data buffer and copy the data into it
if(dataBuffer)
{

delete [] dataBuffer;
}
dataBuffer = new unsigned char[rhs.dataBufferSize];
memcpy(dataBuffer, rhs.dataBuffer, rhs.dataBufferSize);
dataBufferSize = rhs.dataBufferSize;

// allocate the output buffer and copy the data into it
if(outBuffer)
{

delete [] outBuffer;
}
outBuffer = new unsigned char[rhs.outBufferSize];
memcpy(outBuffer, rhs.outBuffer, rhs.outBufferSize);
outBufferSize = rhs.outBufferSize;

// take care of the CRC
packetCRC = rhs.packetCRC;

return *this;
}

bool SendPacket::operator<(const SendPacket& rhs) const
{

FlagByte thisFlagByte(packetHeader.GetTypeFlag());
FlagByte thatFlagByte(rhs.packetHeader.GetTypeFlag());

return thisFlagByte.Prio() < thatFlagByte.Prio();
}

void SendPacket::SetTypeFlag(unsigned char theTypeFlag)
{

BlackJack Data Link Protocol JPL-D-20675
July 2001 57-of-61

packetHeader.SetTypeFlag(theTypeFlag);
}

void SendPacket::SetTypeToReqACK()
{

// make a copy of the flag byte
FlagByte theFlagByte(packetHeader.GetTypeFlag());

// set to request the acknowledge
theFlagByte.SetReqACK(true);

packetHeader.SetTypeFlag(theFlagByte);
}

void SendPacket::SetTypeToTransport()
{

// make a copy of the flag byte
FlagByte theFlagByte(packetHeader.GetTypeFlag());

// set as a Transport type
theFlagByte.SetToTransportPkt();

packetHeader.SetTypeFlag(theFlagByte);
}

void SendPacket::SetTypeToNAQ()
{

// make a copy of the flag byte
FlagByte theFlagByte(packetHeader.GetTypeFlag());

theFlagByte.SetToNAQ(); // set as a negative acknowledge type
theFlagByte.SetCRC(true); // NAQ packets always have CRC
theFlagByte.SetPrio(3); // NAQ packets always have priority 3 (highest)

packetHeader.SetTypeFlag(theFlagByte);
}

void SendPacket::SetTypeToACK()
{

// make a copy of the flag byte
FlagByte theFlagByte(packetHeader.GetTypeFlag());

// set as a positive acknowledge type
theFlagByte.SetToACK(); // set as a positive acknowledge type
theFlagByte.SetCRC(true); // ACK packets always have CRC
theFlagByte.SetPrio(3); // ACK packets always have priority 3 (highest)

packetHeader.SetTypeFlag(theFlagByte);
}

void SendPacket::SetPriority(int thePriority)
{

// make a copy of the flag byte
FlagByte theFlagByte(packetHeader.GetTypeFlag());

// set the priority
theFlagByte.SetPrio(thePriority);

BlackJack Data Link Protocol JPL-D-20675
July 2001 58-of-61

packetHeader.SetTypeFlag(theFlagByte);
}

void SendPacket::SetToUseSequenceNumber()
{

// if the header length is less than the number
// of bytes in a header with a sequence number
if(packetHeader.GetHeaderLength() < 6)
{

// set to 6 bytes, this turns on the sequence number
packetHeader.SetHeaderLength(6);

}
// else, header already includes sequence number
// do nothing

}

void SendPacket::SetDestinationAddress(unsigned short theDestination)
{

// if the header length is less than the number
// of bytes in a header with a destination address
if(packetHeader.GetHeaderLength() < 8)
{

// set to 6 bytes, this turns on the destination address
packetHeader.SetHeaderLength(8);

// set the address
packetHeader.SetDestinationAddress(theDestination);

}
// else, header already includes destination address
// do nothing

}

void SendPacket::SetSourceAddress(unsigned short theSource)
{

// if the header length is less than the number
// of bytes in a header with a source address
if(packetHeader.GetHeaderLength() < 10)
{

// set to 6 bytes, this turns on the source address
packetHeader.SetHeaderLength(10);

// set the address
packetHeader.SetSourceAddress(theSource);

}
// else, header already includes source address
// do nothing

}

void SendPacket::PrepareBuffer()
{

// if this packet is an ACK or NAQ type then zero the data
FlagByte theFlagByte(packetHeader.GetTypeFlag());
if(theFlagByte.isACKPkt() || theFlagByte.isNAQPkt())
{

// zero out the data buffers
ZeroPacket();

// make a copy of the flag byte
FlagByte theFlagByte(packetHeader.GetTypeFlag());

BlackJack Data Link Protocol JPL-D-20675
July 2001 59-of-61

// now set the request for ACK to no acknowledge
// since this is an acknowledge packet
theFlagByte.SetReqACK(false);

packetHeader.SetTypeFlag(theFlagByte);
}

// reset the CRC
packetCRC.Reset();

// count how many extra bytes will be required for escapes
// and calculate the CRC while we're at it
int escapeBytes = 0;

// for the header
for(int i = 0; i < packetHeader.GetHeaderLength(); ++i)
{

// add to the CRC
packetCRC(packetHeader[i]);

if((packetHeader[i] == Header::OpenFlag) || (packetHeader[i] == Header::DLE))
{

++escapeBytes;
}

}

// for the data
for(int i = 0; i < dataBufferSize; ++i)
{

// add to the CRC
packetCRC(dataBuffer[i]);

if((dataBuffer[i] == Header::OpenFlag) || (dataBuffer[i] == Header::DLE))
{

++escapeBytes;
}

}

// for the CRC
unsigned short int theCRC(packetCRC);
for(int i = 0; i < sizeof(theCRC); ++i)
{

char tempByte = *((unsigned char*)(&theCRC) + i);

if((tempByte == Header::OpenFlag) || (tempByte == Header::DLE))
{

++escapeBytes;
}

}

// allocate a new buffer
// remove any previous buffer
if(outBuffer)
{

delete [] outBuffer;
}

// size it based on the size of the header, the size of the data, the escape bytes, two for the CRC, and one for the open flag
outBufferSize = packetHeader.GetHeaderLength() + dataBufferSize + escapeBytes + 2 + 1;
outBuffer = new unsigned char[outBufferSize];

// copy the header information

BlackJack Data Link Protocol JPL-D-20675
July 2001 60-of-61

unsigned char* bufferPointer = outBuffer;

// setup the output buffer
// open flag
*(bufferPointer++) = Header::OpenFlag;

// place the data into the output buffer
// escape the data
// the Header
for(int i = 0; i < packetHeader.GetHeaderLength(); ++i)
{

bufferPointer += EscapeAndWrite(packetHeader[i], bufferPointer);
}

// the actual data
for(int i = 0; i < dataBufferSize; ++i)
{

bufferPointer += EscapeAndWrite(dataBuffer[i], bufferPointer);
}

// attach the CRC to the end
for(int i = 0; i < sizeof(theCRC); ++i)
{

bufferPointer += EscapeAndWrite(*((unsigned char*)(&theCRC) + i), bufferPointer);
}

}

int SendPacket::EscapeAndWrite(unsigned char theByte, unsigned char* theBuffer)
{

// the return value
int RetVal = 1;

if(theByte == Header::OpenFlag)
{

// for OpenFlags in the data stream
*(theBuffer++) = Header::DLE;
*(theBuffer) = Header::OpenESC;

// we wrote two bytes
RetVal = 2;

}
else
{

if(theByte == Header::DLE)
{

// for ESC's in the data stream
*(theBuffer++) = Header::DLE;
*(theBuffer) = Header::ESCESC;

// we wrote two bytes
RetVal = 2;

}
else
{

// for normal bytes in the data stream
*(theBuffer) = theByte;

}
}

return RetVal;
}

BlackJack Data Link Protocol JPL-D-20675
July 2001 61-of-61

#ifdef _NR_
SerialPort& operator<< (SerialPort& s, SendPacket& thePacket)
{

// make sure the packet is formatted
thePacket.PrepareBuffer();

s.SendBuffer(thePacket.outBuffer, thePacket.outBufferSize);

return s;
}
#endif _NR_

#pragma export reset

